Combining multiple classifiers for wrapper feature selection

نویسندگان

  • Kyriacos Chrysostomou
  • Sherry Y. Chen
  • Xiaohui Liu
چکیده

Wrapper feature selection methods are widely used to select relevant features. However, wrappers only use a single classifier. The downside to this approach is that each classifier will have its own biases and will therefore select very different features. In order to overcome the biases of individual classifiers, this study introduces a new data mining method called wrapper-based decision trees (WDT), which combines different classifiers and uses decision trees to classify selected features. The WDT method combines multiple classifiers so selecting classifiers for use in the combinations is an important issue. Thus, we investigate how the number and nature of classifiers influence the results of feature selection. Regarding the number of classifiers, results showed that few classifiers selected more relevant features whereas many selected few features. Regarding the nature of classifier, decision tree classifiers selected more features and the features that generated accuracies much higher than other classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

A FRGSNN Hybrid Feature Selection Combining FRGS filter and GSNN wrapper

How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their differential expressions among phenotypes and pick the top-ranked genes. While microarrays can measure the levels of thousands of genes per sample, case-control microarray studies usually involve no m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDMMM

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008